ГАЗ-53 ГАЗ-3307 ГАЗ-66

Законы развития технических систем холодильник. Система законов развития техники (основы теории развития технических систем). Метод моделирования «маленькими человечками»

Развитие всех систем идет в направлении увеличения степени идеальности.

Идеальная техническая система - это система, вес, объем и площадь которой стремятся к нулю, хотя ее способность выполнять работу при этом не уменьшается. Иначе говоря, идеальная система - это когда системы нет, а функция ее сохраняется и выполняется.

Несмотря на очевидность понятия «идеальная техническая система», существует определенный парадокс: реальные системы становятся все более крупноразмерными и тяжелыми. Увеличиваются размеры и вес самолетов, танкеров, автомобилей и т. д. Парадокс этот объясняется тем, что высвобожденные при совершенствовании системы резервы направляются на увеличение ее размеров и, главное, повышение рабочих параметров. Первые автомобили имели скорость 15--20 км/ч. Если бы эта скорость не увеличивалась, постепенно появились бы автомобили, намного более легкие и компактные с той же прочностью и комфортабельностью. Однако каждое усовершенствование в автомобиле (использование более прочных материалов, повышение к. л. д. двигателя и т. д.) направлялось на увеличение скорости автомобиля и того, что «обслуживает» эту скорость (мощная тормозная система, прочный кузов, усиленная амортизация). Чтобы наглядно увидеть возрастание степени идеальности автомобиля, надо сравнить современный автомобиль со старым рекордным автомобилем, имевшим ту же скорость (на той же дистанции).

Видимый вторичный процесс (рост скорости, мощностей, тоннажа и т. д.) маскирует первичный процесс увеличения степени идеальности технической системы. Но при решении изобретательских задач необходимо ориентироваться именно на увеличение степени идеальности - это надежный критерий для корректировки задачи и оценки полученного ответа.

— законов, которые определяют начало жизни технических систем.

Любая техническая система возникает в результате синтеза в единое целое отдельных частей. Не всякое объединение частей дает жизнеспособную систему. Существуют по крайней мере три закона, выполнение которых необходимо для того, чтобы система оказалась жизнеспособной.

Необходимым условием принципиальной жизнеспособности технической системы является наличие и минимальная работоспособность основных частей системы.

Каждая техническая система должна включать четыре основные части: двигатель, трансмиссию, рабочий орган и орган управления. Смысл закона 1 заключается в том, что для синтеза технической системы необходимо наличие этих четырех частей и их минимальная пригодность к выполнению функций системы, ибо сама по себе работоспособная часть системы может оказаться неработоспособной в составе той или иной технической системы. Например, двигатель внутреннего сгорания, сам по себе работоспособный, оказывается неработоспособным, если его использовать в качестве подводного двигателя подводной лодки.

Закон 1 можно пояснить так: техническая система жизнеспособна в том случае, если все ее части не имеют «двоек», причем «оценки» ставятся по качеству работы данной части в составе системы. Если хотя бы одна из частей оценена «двойкой», система нежизнеспособна даже при наличии «пятерок» у других частей. Аналогичный закон применительно к биологическим системам был сформулирован Либихом еще в середине прошлого века («закон минимума»).

Из закона 1 вытекает очень важное для практики следствие.

Чтобы техническая система была управляемой, необходимо, чтобы хотя бы одна ее часть была управляемой.

«Быть управляемой» — значит менять свойства так, как это надо тому, кто управляет.

Знание этого следствия позволяет лучше понимать суть многих задач и правильнее оценивать полученные решения. Возьмем, например, задачу 37 (запайка ампул). Дана система из двух неуправляемых частей: ампулы вообще неуправляемы — их характеристики нельзя (невыгодно) менять, а горелки плохо управляемы по условиям задачи. Ясно, что решение задачи будет состоять во введении в систему еще одной части (вепольный анализ сразу подсказывает: это вещество, а не поле, как, например, в задаче 34 об окраске цилиндров). Какое вещество (газ, жидкость, твердое тело) не пустит огонь туда, куда он не должен пройти, и при этом не будет мешать установке ампул? Газ и твердое тело отпадают, остается жидкость, вода. Поставим ампулы в воду так, чтобы над водой поднимались только кончики капилляров (а.с. № 264 619). Система приобретает управляемость: можно менять уровень воды — это обеспечит изменение границы между горячей и холодной зонами. Можно менять температуру воды — это гарантирует устойчивость системы в процессе работы.

Необходимым условием принципиальной жизнеспособности технической системы является сквозной проход энергии по всем частям системы.

Любая техническая система является преобразователем энергии. Отсюда очевидная необходимость передачи энергии от двигателя через трансмиссию к рабочему органу.

Передача энергии от одной части системы к другой может быть вещественной (например, вал, шестерни, рычаги и т.д.), полевой (например, магнитное поле) и вещественно-полевой (например, передача энергии потоком заряженных частиц). Многие изобретательские задачи сводятся к подбору того или иного вида передачи, наиболее эффективного в заданных условиях. Такова задача 53 о нагреве вещества внутри вращающейся центрифуги. Вне центрифуги энергия есть. Имеется и «потребитель», он находится внутри центрифуги. Суть задачи — в создании «энергетического моста». Такого рода «мосты» могут быть однородными и неоднородными. Если вид энергии меняется при переходе от одной части системы к другой — это неоднородный «мост». В изобретательских задачах чаще всего приходится иметь дело именно с такими мостами. Так, в задаче 53 о нагреве вещества в центрифуге выгодно иметь электромагнитную энергию (ее передача не мешает вращению центрифуги), а внутри центрифуги нужна энергия тепловая. Особое значение имеют эффекты и явления, позволяющие управлять энергией на выходе из одной части системы или на входе в другую ее часть. В задаче 53 нагрев может быть обеспечен, если центрифуга находится в магнитном поле, а внутри центрифуги размещен, например, диск из ферромагнетика. Однако по условиям задачи требуется не просто нагревать вещество внутри центрифуги, а поддерживать постоянную температуру около 2500 С. Как бы ни менялся отбор энергии, температура диска должна быть постоянной. Это обеспечивается подачей «избыточного» поля, из которого диск отбирает энергию, достаточную для нагрева до 2500 С, после чего вещество диска «самоотключается» (переход через точку Кюри). При понижении температуры происходит «самовключение» диска.

Важное значение имеет следствие из закона 2..

Чтобы часть технической системы была управляемой, необходимо обеспечить энергетическую проводимость между этой частью и органами управления.

В задачах на измерение и обнаружение можно говорить об информационной проводимости, но она часто сводится к энергетической, только слабой. Примером может служить решение задачи 8 об измерении диаметра шлифовального круга, работающего внутри цилиндра. Решение задачи облегчается, если рассматривать не информационную, а энергетическую проводимость. Тогда для решения задачи нужно прежде всего ответить на два вопроса: в каком виде проще всего подвести энергию к кругу и в каком виде проще всего вывести энергию сквозь стенки круга (или по валу)? Ответ очевиден: в виде электрического тока. Это еще не окончательное решение, но уже сделан шаг к правильному ответу.

Необходимым условием принципиальной жизнеспособности технической системы является согласование ритмики (частоты колебаний, периодичности) всех частей системы.

Примеры к этому закону приведены в гл.1..

Развитие всех систем идет в направлении увеличения степени идеальности.

Идеальная техническая система — это система, вес, объем и площадь которой стремятся к нулю, хотя ее способность выполнять работу при этом не уменьшается. Иначе говоря, идеальная система — это когда системы нет, а функция ее сохраняется и выполняется.

Несмотря на очевидность понятия «идеальная техническая система», существует определенный парадокс: реальные системы становятся все более крупноразмерными и тяжелыми. Увеличиваются размеры и вес самолетов, танкеров, автомобилей и т.д. Парадокс этот объясняется тем, что высвобожденные при совершенствовании системы резервы направляются на увеличение ее размеров и, главное, повышение рабочих параметров. Первые автомобили имели скорость 15–20 км/ч. Если бы эта скорость не увеличивалась, постепенно появились бы автомобили, намного более легкие и компактные с той же прочностью и комфортабельностью. Однако каждое усовершенствование в автомобиле (использование более прочных материалов, повышение к.п.д. двигателя и т.д.) направлялось на увеличение скорости автомобиля и того, что «обслуживает» эту скорость (мощная тормозная система, прочный кузов, усиленная амортизация). Чтобы наглядно увидеть возрастание степени идеальности автомобиля, надо сравнить современный автомобиль со старым рекордным автомобилем, имевшим ту же скорость (на той же дистанции).

Видимый вторичный процесс (рост скорости, мощностей, тоннажа и т.д.) маскирует первичный процесс увеличения степени идеальности технической системы. Но при решении изобретательских задач необходимо ориентироваться именно на увеличение степени идеальности — это надежный критерий для корректировки задачи и оценки полученного ответа.

Развитие частей системы идет неравномерно; чем сложнее система, тем неравномернее развитие ее частей.

Неравномерность развития частей системы является причиной возникновения технических и физических противоречий и, следовательно, изобретательских задач. Например, когда начался быстрый рост тоннажа грузовых судов, мощность двигателей быстро увеличилась, а средства торможения остались без изменения. В результате возникла задача: как тормозить, скажем, танкер водоизмещением 200 тыс. тонн. Задача эта до сих пор не имеет эффективного решения: от начала торможения до полной остановки крупные корабли успевают пройти несколько миль…

Исчерпав возможности развития, система включается в надсистему в качестве одной из частей; при этом дальнейшее развитие идет на уровне надсистемы.
Об этом законе мы уже говорили.

Она включает законы, отражающие развитие современных технических систем под действием конкретных технических и физических факторов. Законы «статики» и «кинематики» универсальны — они справедливы во все времена и не только применительно к техническим системам, но и к любым системам вообще (биологическим и т.д.). «Динамика» отражает главные тенденции развития технических систем именно в наше время.

Развитие рабочих органов системы идет сначала на макро-, а затем на микроуровне.

В большинстве современных технических систем рабочими органами являются «железки», например винты самолета, колеса автомобиля, резцы токарного станка, ковш экскаватора и т.д. Возможно развитие таких рабочих органов в пределах макроуровня: «железки» остаются «железками», но становятся более совершенными. Однако неизбежно наступает момент, когда дальнейшее развитие на макроуровне оказывается невозможным. Система, сохраняя свою функцию, принципиально перестраивается: ее рабочий орган начинает действовать на микроуровне. Вместо «железок» работа осуществляется молекулами, атомами, ионами, электронами и т.д.

Переход с макро- на микроуровень — одна из главных (если не самая главная) тенденций развития современных технических систем. Поэтому при обучении решению изобретательских задач особое внимание приходится обращать на рассмотрение перехода «макро-микро» и физических эффектов, реализующих этот переход.

Развитие технических систем идет в направлении увеличения степени вепольности.

Смысл этого закона заключается в том, что невепольные системы стремятся стать вепольными, а в вепольных системах развитие идет в направлении перехода от механических полей к электромагнитным; увеличения степени дисперсности веществ, числа связей между элементами и отзывчивости системы.

Многочисленные примеры, иллюстрирующие этот закон, уже встречались при решении задач.

"Прогрессивными и действующими в течение долгого времени оказываются только те тенденции, которые приближают реальную машину к идеальной".

"Развитие всех систем идет в направлении увеличения степени идеальности.

Идеальная техническая система - это система, вес, объем и площадь которой стремятся к нулю, хотя ее способность выполнять работу при этом не уменьшается. Иначе говоря, идеальная система - это когда системы нет, а функция ее сохраняется и выполняется.

Несмотря на очевидность понятия "идеальная техническая система", существует определенный парадокс: реальные системы становятся все более крупноразмерными и тяжелыми. Увеличиваются размеры и вес самолетов, танкеров, автомобилей и т. д. Парадокс этот объясняется тем, что высвобожденные при совершенствовании системы резервы направляются на увеличение ее размеров и, главное, повышение рабочих параметров. Первые автомобили имели скорость 15-20 км/ч. Если бы эта скорость не увеличивалась, постепенно появились бы автомобили, намного более легкие и компактные с той же прочностью и комфортабельностью. Однако каждое усовершенствование в автомобиле (использование более прочных материалов, повышение к. п. д. двигателя и т. д.) направлялось на увеличение скорости автомобиля и того, что "обслуживает" эту скорость (мощная тормозная система, прочный кузов, усиленная амортизация). Чтобы наглядно увидеть возрастание степени идеальности автомобиля, надо сравнить современный автомобиль со старым рекордным автомобилем, имевшим ту же скорость (на той же дистанции).

Видимый вторичный процесс (рост скорости, мощностей, тоннажа и т. д.) маскирует первичный процесс увеличения степени идеальности технической системы, при решении изобретательских задач необходимо ориентироваться именно на увеличение степени идеальности - это надежный критерий для корректировки задачи и оценки полученного ответа".

"Существование технической системы - не самоцель. Система нужна только для выполнения какой-то функции (или нескольких функций). Система идеальна, если ее нет, а функция осуществляется. Конструктор подходит к задаче так: "Нужно осуществить то-то и то-то, следовательно, понадобятся такие-то механизмы и устройства". Правильный изобретательский подход выглядит совершенно иначе: "Нужно осуществить то-то и то-то, не вводя в систему новые механизмы и устройства".

Закон увеличения степени идеальности системы универсален . Зная этот закон, можно преобразовать любую задачу и сформулировать идеальный вариант решения. Конечно, далеко не всегда этот идеальный вариант оказывается полностью осуществимым. Иногда приходится несколько отступить от идеала. Важно, однако, другое: представление об идеальном варианте, вырабатываемое по четким правилам, и сознательные мыслительные операции "по законам" дают то, для чего раньше требовались мучительно долгий перебор вариантов, счастливая случайность, догадки и озарения".

Сформулировал законы развития технических систем, знание которых помогает инженерам предсказывать пути возможных дальнейших улучшений продуктов:

  1. Закон увеличения степени идеальности системы.
  2. Закон S-образного развития технических систем.
  3. Закон динамизации.
  4. Закон полноты частей системы.
  5. Закон сквозного прохода энергии.
  6. Закон опережающего развития рабочего органа.
  7. Закон перехода «моно - би - поли».
  8. Закон перехода с макро- на микроуровень.

Самый важный закон рассматривает идеальность системы - одно из базовых понятий в ТРИЗ.

Описание законов

Закон увеличения степени идеальности системы

Техническая система в своём развитии приближается к идеальности . Достигнув идеала, система должна исчезнуть, а её функция продолжать выполняться.

Основные пути приближения к идеалу:

  • повышение количества выполняемых функций,
  • «свертывание» в рабочий орган,
  • переход в надсистему.

При приближении к идеалу техническая система вначале борется с силами природы, затем приспосабливается к ним и, наконец, использует их для своих целей.

Закон увеличения идеальности наиболее эффективно применяется к тому элементу, который непосредственно расположен в зоне возникновения конфликта или сам порождает нежелательные явления. При этом повышение степени идеальности, как правило, осуществляется применением незадействованных ранее ресурсов (веществ, полей), имеющихся в зоне возникновения задачи. Чем дальше от зоны возникновения конфликта будут взяты ресурсы, тем в меньшей степени удастся продвинуться к идеалу.

Закон S-образного развития технических систем

Эволюцию множества систем можно изобразить S-образной кривой, показывающей, как меняются во времени темпы её развития. Выделяются три характерных этапа:

  1. «детство» . Идёт, как правило, достаточно долго. В этот момент идёт проектирование системы, её доработка, изготовление опытного образца, подготовка к серийному выпуску.
  2. «расцвет» . Она бурно совершенствуется, становится всё более мощной и производительной. Машина выпускается серийно, её качество улучшается и спрос на неё растёт.
  3. «старость» . С какого-то момента улучшать систему становится всё труднее. Мало помогают даже крупные увеличения ассигнований. Несмотря на усилия конструкторов, развитие системы не поспевает за всё возрастающими потребностями человека. Она пробуксовывает, топчется на месте, меняет свои внешние очертания, но остаётся такой, какая есть, со всеми своими недостатками. Все ресурсы окончательно выбраны. Если попытаться в этот момент искусственно увеличивать количественные показатели системы или развивать её габариты, оставляя прежний принцип, то сама система вступает в конфликт с окружающей средой и человеком. Она начинает больше приносить вреда, чем пользы.

В качестве примера рассмотрим паровоз . Вначале был достаточно долгий экспериментальный этап с единичными несовершенными экземплярами, внедрение которых вдобавок сопровождалось сопротивлением общества. Затем последовало бурное развитие термодинамики, совершенствование паровых машин, железных дорог, сервиса - и паровоз получает публичное признание и инвестиции в дальнейшее развитие. Затем, несмотря на активное финансирование, произошёл выход на природные ограничения: предельный тепловой КПД , конфликт с окружающей средой, неспособность увеличивать мощность без увеличения массы - и, как следствие, в области начался технологический застой. И, наконец, произошло вытеснение паровозов более экономичными и мощными тепловозами , и электровозами . Паровой двигатель достиг своего идеала - и исчез. Его функции взяли на себя ДВС и электромоторы - тоже вначале несовершенные, затем бурно развивающиеся и, наконец, упирающиеся в развитии в свои природные пределы. Затем появится другая новая система - и так бесконечно.

Закон динамизации

Надёжность, стабильность и постоянство системы в динамичном окружении зависят от её способности изменяться. Развитие, а значит и жизнеспособность системы, определяется главным показателем: степенью динамизации , то есть способностью быть подвижной, гибкой, приспосабливаемой к внешней среде, меняющей не только свою геометрическую форму, но и форму движения своих частей, в первую очередь рабочего органа. Чем выше степень динамизации, тем, в общем случае, шире диапазон условий, при которых система сохраняет свою функцию. Например, чтобы заставить крыло самолёта эффективно работать в существенно разных режимах полёта (взлёт, крейсерский полёт, полёт на предельной скорости, посадка), его динамизируют путём добавления закрылков , предкрылков , интерцепторов , системы изменения стреловидности и проч.

Однако, для подсистем закон динамизации может нарушаться - иногда выгоднее искусственно уменьшить степень динамизации подсистемы, тем самым упростив её, а меньшую стойкость/приспособляемость компенсировать созданием стабильной искусственной среды вокруг неё, защищённой от внешних факторов. Но в итоге совокупная система (над-система) всё же получает большую степень динамизации. Например, вместо того, чтобы приспосабливать трансмиссию к загрязнению путём её динамизации (самоочистка, самосмазка, перебалансировка), можно поместить её в герметичный кожух, внутри которого создана среда, наиболее благоприятная для движущихся частей (прецизионные подшипники, масляный туман, подогрев и проч.)

Другие примеры:

  • В 10-20 раз снижается сопротивление движению плуга , если его лемех вибрирует с определенной частотой в зависимости от свойств грунта.
  • Ковш экскаватора, превратившись в роторное колесо, породил новую высокоэффективную систему добычи полезных ископаемых.
  • Автомобильное колесо из жёсткого деревянного диска с металлическим ободом стало подвижным, мягким и эластичным.

Закон полноты частей системы

Любая техническая система, самостоятельно выполняющая какую-либо функцию, имеет четыре основные части - двигатель, трансмиссию, рабочий орган и средство управления. Если в системе отсутствует какая-либо из этих частей, то её функцию выполняет человек или окружающая среда.

Двигатель - элемент технической системы, являющийся преобразователем энергии, необходимой для выполнения требуемой функции. Источник энергии может находиться либо в системе (например, бензин в баке для двигателя внутреннего сгорания автомобиля), либо в надсистеме (электроэнергия из внешней сети для электродвигателя станка).

Трансмиссия - элемент, передающий энергию от двигателя к рабочему органу с преобразованием её качественных характеристик (параметров).

Рабочий орган - элемент, передающий энергию на обрабатываемый объект, и завершающий выполнение требуемой функции.

Средство управления - элемент, регулирующий поток энергии к частям технической системы и согласующий их работу во времени и пространстве.

Анализируя любую автономно работающую систему, будь то холодильник, часы, телевизор или авторучка, везде можно видеть эти четыре элемента.

  • Фрезерный станок. Рабочий орган: фреза. Двигатель: электродвигатель станка. Всё что находится между электродвигателем и фрезой можно считать трансмиссией. Средство управления - человек-оператор, рукоятки и кнопки, или программное управление (станок с программным управлением). В последнем случае программное управление «вытеснило» человека-оператора из системы.

Закон сквозного прохода энергии

Итак, любая работающая система состоит из четырёх основных частей и любая из этих частей является потребителем и преобразователем энергии. Но мало преобразовать, надо ещё без потерь передать эту энергию от двигателя к рабочему органу, а от него - на обрабатываемый объект. Это закон сквозного прохода энергии. Нарушение этого закона ведёт к возникновению противоречий внутри технической системы, что в свою очередь порождает изобретательские задачи.

Главным условием эффективности технической системы с точки зрения энергопроводимости является равенство способностей частей системы по принятию и передаче энергии.

  • Импедансы передатчика , фидера и антенны должны быть согласованы - в этом случае в системе устанавливается режим бегущей волны , наиболее эффективный для передачи энергии. Рассогласование ведёт к появлению стоячих волн и диссипации энергии.

Первое правило энергопроводимости системы

полезной функцией , то для повышения её работоспособности в местах контактирования должны быть вещества с близкими или одинаковыми уровнями развития.

Второе правило энергопроводимости системы

Если элементы системы при взаимодействии образуют энергопроводящую систему с вредной функцией , то для её разрушения в местах контактирования элементов должны быть вещества с различными или противоположными уровнями развития.

  • При застывании бетон сцепляется с опалубкой, и её трудно потом отделить. Две части хорошо согласовались между собой по уровням развития вещества - оба твёрдые, шероховатые, неподвижные и т. д. Образовалась нормальная энергопроводящая система. Чтобы не допустить её образования, нужно максимальное рассогласование веществ, например: твёрдое - жидкое, шероховатое - скользкое, неподвижное - подвижное. Здесь может быть несколько конструктивных решений - образование прослойки воды, нанесение специальных скользких покрытий, вибрация опалубки и др.

Третье правило энергопроводимости системы

Если элементы при взаимодействии друг с другом образуют энергопроводящую систему с вредной и полезной функцией , то в местах контактирования элементов должны быть вещества, уровень развития которых и физико-химические свойства изменяются под воздействием какого-либо управляемого вещества или поля.

  • Согласно этому правилу выполнено большинство устройств в технике, где требуется соединять и разъединять энергопотоки в системе. Это различные муфты включения в механике, вентили в гидравлике, диоды в электронике и многое другое.

Закон опережающего развития рабочего органа

В технической системе основной элемент - рабочий орган. И чтобы его функция была выполнена нормально, его способности по усвоению и пропусканию энергии должны быть не меньше, чем двигатель и трансмиссия. Иначе он или сломается, или станет неэффективным, переводя значительную часть энергии в бесполезное тепло. Поэтому желательно, чтобы рабочий орган опережал в своём развитии остальные части системы, то есть обладал большей степенью динамизации по веществу, энергии или организации.

Часто изобретатели совершают ошибку, упорно развивая трансмиссию, управление, но не рабочий орган. Такая техника, как правило, не даёт значительного прироста экономического эффекта и существенного повышения КПД.

  • Производительность токарного станка и его техническая характеристика оставались почти неизменными на протяжении многих лет, хотя интенсивно развивались привод, трансмиссия и средства управления, потому что сам резец как рабочий орган оставался прежним, то есть неподвижной моносистемой на макроуровне. С появлением вращающихся чашечных резцов производительность станка резко поднялась. Ещё больше она возросла, когда была задействована микроструктура вещества резца: под действием электрического тока режущая кромка резца стала колебаться до нескольких раз в секунду. Наконец, благодаря газовым и лазерным резцам, полностью изменившим облик станка, достигнута невиданная ранее скорость обработки металла.

Закон перехода «моно - би - поли»

Первый шаг - переход к бисистемам. Это повышает надежность системы. Кроме того, в бисистеме появляется новое качество, которое не было присуще моносистеме. Переход к полисистемам знаменует собой эволюционный этап развития, при котором приобретение новых качеств происходит только за счет количественных показателей. Расширенные организационные возможности расположения однотипных элементов в пространстве и времени позволяют полнее задействовать их возможности и ресурсы окружающей среды.

  • Двухмоторный самолет (бисистема) надёжней своего одномоторного собрата и обладает большей маневренностью (новое качество).
  • Конструкция комбинированного велосипедного ключа (полисистема) привела к заметному снижению расхода металла и уменьшению габаритов в сравнении с группой отдельных ключей.
  • Лучший изобретатель - природа - продублировала особо важные части организма человека: у человека два легких, две почки, два глаза и т. д.
  • Многослойная фанера намного прочнее доски тех же размеров.

Но на каком-то этапе развития в полисистеме начинают появляться сбои. Упряжка из более чем двенадцати лошадей становится неуправляемой, самолет с двадцатью моторами требует многогократного увеличения экипажа и трудноуправляем. Возможности системы исчерпались. Что дальше? А дальше полисистема снова становится моносистемой… Но на качественно новом уровне. При этом новый уровень возникает только при условии повышения динамизации частей системы, в первую очередь рабочего органа.

  • Вспомним тот же велосипедный ключ. Когда динамизировался его рабочий орган, т. е. губки стали подвижными, появился разводной ключ. Он стал моносистемой, но в то же время способным работать с многими типоразмерами болтов и гаек.
  • Многочисленные колёса вездеходов превратились в одну подвижную гусеницу.

Закон перехода с макро- на микроуровень

Переход с макро- на микроуровень - главная тенденция развития всех современных технических систем.

Для достижения высоких результатов задействуются возможности структуры вещества. Вначале используется кристаллическая решетка, затем ассоциации молекул, единичная молекула, часть молекулы, атом и, наконец, части атома.

  • В погоне за грузоподъёмностью на закате поршневой эры самолёты снабжались шестью, двенадцатью и более моторами. Затем рабочий орган - винт - всё же перешел на микроуровень, став газовой струёй.

См. также

  • Вепольный анализ

Источники

  • Законы развития систем Альтшуллер Г. С. Творчество как точная наука. - М.: «Советское радио», 1979. - С. 122-127.
  • «Линии жизни» технических систем © Альтшуллер Г. С., 1979 (Творчество как точная наука. - М.: Сов. радио, 1979. С. 113-119.)
  • Система законов развития техники (основы теории развития технических систем) Издание 2-е исправленное и дополненное © Юрий Петрович Саламатов, 1991-1996 г.

Wikimedia Foundation . 2010 .

Смотреть что такое "Законы развития технических систем" в других словарях:

    ЗАКОНЫ РАЗВИТИЯ ТЕХНИЧЕСКИХ СИСТЕМ (по ТРИЗ) - – объективные законы, отражающие существенные и повторяющиеся особенности развития технических систем. Каждый из законов описывает какую либо конкретную тенденцию развития и показывает, как её использовать при прогнозировании развития,… …

    ЗАКОНЫ И ЗАКОНОМЕРНОСТИ РАЗВИТИЯ ТЕХНИКИ - – законы и закономерности, которые в зависимости от исторического времени смены моделей и поколений технических систем отражают и определяют для отдельных сходных технических систем объективно существующие, устойчивые, повторяющиеся связи и… … Философия науки и техники: тематический словарь

    ТРИЗ теория решения изобретательских задач, основанная Генрихом Сауловичем Альтшуллером и его коллегами в 1946 году, и впервые опубликованная в 1956 году это технология творчества, основанная на идее о том, что «изобретательское творчество… … Википедия

    - (теория систем) научная и методологическая концепция исследования объектов, представляющих собой системы. Она тесно связана с системным подходом и является конкретизацией его принципов и методов. Первый вариант общей теории систем был… … Википедия

4. Практическое использование понятия идеальности

Кудрявцев А. В.

Идеальность - одно из ключевых понятий Теории решения изобретательских задач. Понятие идеальности составляет суть одного из законов (закон повышения идеальности), а также лежит в основе иных законов развития техники, наиболее отчетливо проявляясь в таких, как:

Закон вытеснения человека из технической системы;

Закон перехода от макросистем к микросистемам.

Г. С. Альтшуллер говорил, что идеальная система - это такая система, которой нет, а функция ее выполняется.

При построении образа идеальной технической системы необходимо выполнить два действия - представить себе, что реальной системы может и не быть, что можно обходиться без нее, а также сформулировать и точно определить функцию, ради которой система необходима. Выполнение обоих действий в реальных условиях может вызывать определенные трудности. Рассмотрим их более детально.

Формулирование системы как отсутствующей в учебном процессе обычно совершается достаточно просто. (Идеальный телефон - такой телефон, которого нет…, идеальный фонарик - такой фонарик, которого нет… и так далее). Однако в реальной деятельности, при работе с объектами, важными для решателя, у него могут возникнуть проблемы с самим объединением того, что дорого и необходимой по процедуре фигуры отрицания. Например, абстрактное понятие «идеального специалиста» строится легко. Идеальный специалист - это такой специалист, которого нет, а функции которого выполняются. Такое определение формируется достаточно просто. Но у многих людей вызывает затруднение формулировка идеальной модели именно для их специальности. Для многих конкретных специалистов возникают затруднения при формировании модели мира, в котором отсутствует потребность в их услугах. Врачу трудно определить, что такое идеальный врач, учителю, что такое идеальный учитель. Ранее ясная, модель в данном случае может деформироваться, сводиться к иной, например, к перечислению комплекса предъявляемых требований. Здесь проблема в построении новой модели мира, такого, в котором отсутствует важный и кажущийся незыблемым элемент.

Нелегко выполнить и вторую часть предписания - точно определить, что же такое «а функции ее выполняются». Но именно в этой работе и состоит наиболее важный аспект применения модели - понять, зачем вообще потребовалась совершенствуемая система.

В процессе решения задачи зачастую формулируются без предварительного определения и уточнения цели. Определение будущего результата работы подменяется описанием машины, предназначенной для достижения этого результата. Например, при необходимости фиксировать деталь, в задании на разработку может появиться формулировка «разработать устройство для фиксации детали». Такие исходные фомулировки должны, по возможности, корректироваться и уточняться.

В предыдущей лекции об идеальности отмечалось, что очень важно и полезно уметь увидеть цель, освобожденную от конкретных средств ее реализации. Видеть цель - это видеть результат действия еще до того, как станет понятно, с помощью чего можно подойти к этому результату. Такой подход необходим еще и потому, что оценка найденных средств может быть выполнена только при понимании желаемой цели. Глубина этого понимания определяет возможности и точность оценки, выбора оптимального для конкретной ситуации средства.

Например: «необходимо разработать устройство для опускания оборудования в колодец».

Эта формулировка может быть заменена на более общую - «необходимо опустить оборудование в колодец». Здесь уже появляется возможность воспользоваться существующими средствами. Эта формулировка также может быть изменена в очередной раз на еще более общую. Например, на такую: «Необходимо, чтобы оборудование находилось в колодце».

Можно ли продолжить ряд обобщений? Конечно, если мы обратимся к назначению оборудования. Если оно предназначено для подъема воды на поверхность, то цель может звучать так: «Необходимо, чтобы вода поднималась на поверхность». При этом появляется возможность рассмотреть варианты, в которых устройство, расположенное наверху, поднимает воду из колодца.

Самостоятельное, автономное применение принципа идеальности и определения идеальной технической системы, является одной из отличительных черт, формирующих стиль работы специалистов по ТРИЗ. Однако наиболее часто можно встретить в литературе использование этого принципа в операторе ИКР (формировании идеального конечного результата) - одного из наиболее интересных и эвристически ценных шагов АРИЗ.

Объем понятия Идеального конечного результата может отличаться от объема понятия и возможностей идеальной технической системы. ИКР - это постановка перед выбранным объектом требования самостоятельно реализовать комплекс функций, первоначально реализовавшихся другим объектом, (элементом той же системы, надсистемой, внешней средой). Возможны три варианта такой реализации, различающихся степенью идеальности (исчезновения) исходно заданной технической системы.

1. Объект сам (без обычных, специально предназначенных систем или устройств) обрабатывает себя, сохраняя при этом потребительские качества. Это означает, что изделие выполняет функцию системы, предназначенной для ее обработки (оставаясь полезной для потребителя). Данный ИКР фактически совпадает с пониманнием идеальной технической системы. Однако формулирование такого варианта не всегда бывает целесообразным, так как в некоторых задачах оно может вступать в противоречие с ранее заданным уровнем конкретизации зоны конфликта.

Система, предназначенная для обработки, как правило, состоит из ряда узлов. (Состав этих узлов в обобщенной форме рассматривался при изучении закона полноты частей системы). Идеальность такой системы повышается, если какой-либо из ее элементов берет на себя дополнительную функцию, замещает иные элементы. Наиболее целесообразно требовать это от инструмента, части системы, непосредственно обрабатывающей изделие. В этом случае ИКР имеет вид:

2. Инструмент сам выполняет функцию вспомогательных элементов системы (снабжает себя энергией, ориентирует себя в пространстве…), продолжая обрабатывать изделие (то есть выполнять свою функцию).

Естественно, что при этом инструмент может брать на себя не все вспомогательные функции, а их часть (например функции управления, либо снабжения энергией…). В различных случаях будут получаться системы, отличающиеся уровнем «свернутости» - системы без ярко выраженного источника энергии, либо без трансмиссии, либо без органа управления.

Если по каким либо причинам не удается избавиться от системы, реализующей важную функцию, то можно нагрузить эту систему дополнительными функциями и за счет этого избавиться от иных систем. ИКР в этом случае записывается в следующей форме:

3. Система сама выполняет дополнительную функцию, продолжая осуществлять свою.

Как видно, общая структура ИКР выглядит так:

Выбранный объект

выполняет дополнительную функцию,

продолжая выполнять свою функцию (здесь могут быть введены и иные дополнительные условия).

Отдельно следует рассмотреть ситуацию, когда в процессе работы над задачей принято решение ввести дополнительный элемент. Это может быть элемент, реально существующий в окружении системы, а может быть абстрактное представление - так называемый «Х-элемент». В таких ситуациях принято формулировать ИКР по следующей структуре:

Выбранный объект («Х-элемент»)

Устраняет ранее сформулированный нежелательный эффект

Абсолютно не усложняя систему (ведь требование сохранения собственных функций элемента здесь чаще всего избыточно, а риск усложнения системы дополнительными элементами вполне реален).

Работа с «Х-элементом» (в ранних версиях АРИЗов использовалось понятие «Внешняя среда») требует специальных навыков. Ведь строя ИКР и выполняя некоторые последующие действия, изобретатель формирует комплекс требований, свойств, характеристик, введение которых в систему позволит решить поставленную задачу. «Х-элемент» - это совокупность таких требуемых харатеристик, которые потом придется искать в самой системе как ее латентные, скрытые, непроявленные возможности. При невозможности такого внутреннего подбора, появляется необходимость использования элементов с требуемыми свойствами.

Попробуем выработать навык формулирования ИКР и его практического использования при решении изобретательских задач.

Используем ИКР применительно к такой области техники, как передача тепла на расстояние. Общеизвестно, что лучшие из доступных нам природных проводников тепла - это металлы. Особенно выделяются в этом плане медь, серебро, золото. Но и металлы передают тепло не так хорошо, как иногда этого бы хотелось. Например, передать значительный поток тепла по металлическому пруту длиной несколько метров будет достаточно сложно. Нагретый конец такого прутка может уже начать плавиться, а с противоположной стороны его вполне можно будет держать руками. Здесь вырисовывается интересная задача: как обеспечить переток значительной мощности через ограниченное сечение в условиях малых перепадов температур.

Сформулируем идеальный конечный результат в следующем виде: «Тепловой поток большой мощности сам проходит через пространство без потерь и при минимальной разности температур».

Такие устройства были созданы. Они получили название «тепловые трубы». Рассмотрим простейшую конструкцию подобного устройства.

Возьмем трубу, выполненную из теплостойкого материала (например, из стали). Выкачаем из нее воздух и введем внутрь некоторое количество жидкости - теплоносителя (рис. 4.1).

Рис. 4.1

Расположим трубу таким образом, чтобы ее нижний конец оказался в зоне нагрева, а верхний в зоне отвода тепла. Нагрев жидкости превратит ее в пар. Пар мгновенно заполнит весь объем и начнет конденсироваться на холодном торце. При этом будет отдана теплота, равная теплоте парообразования. (Ведь известно, что теплота парообразования равна теплоте, отдаваемой при конденсации пара) Капли, сконденсировавшиеся на верхней поверхности теплоносителя, будут падать вниз и вновь нагреваться. Такой «круговорот воды в природе» может переносить действительно очень большие мощности.

Как видно из этого описания процесса теплопереноса, тепловой поток действительно сам распространяется по объему тепловой трубы.

Рассмотрим теперь новую ситуацию с придуманным нами устройством. В предыдущем случае мы имели зону нагрева внизу, а съема тепла - вверху. Зададимся вопросом: что произойдет, если зона нагрева окажется вверху, а съем тепла будет производиться снизу (рис. 4.2)? Очевидно, что устройство перестанет работать. Для того чтобы оно заработало, надо, чтобы жидкость перед нагревом поднялась вверх.

Задача 4.1.: как обеспечить подьем теплоносителя к верхнему торцу трубы?

Рис. 4.2

Первое побуждение - поднять жидкость вверх с помощью специального устройства - например, насоса. Но построим ИКР. Мы можем применить этот оператор к трубе, к жидкости, к тепловому полю, к охлаждающему агенту. Важно при этом, чтобы формулировки были действительно построены до конца и полностью произнесены или записаны. Например:

ИКР: труба сама поднимает жидкость вверх, в зону нагрева, не мешая свободному распространению пара;

(вариант реализации: в теле трубы могут быть выполнены специальные каналы, по которым будет подниматься жидкость);

ИКР: жидкость сама поднимается в зону нагрева, не мешая свободному распространению пара;

ИКР: тепловое поле само поднимает жидкость в зону нагрева, не прекращая нагрева;

(вариант реализации: тепловое поле, распространяемое сверху, может выполнять полезную работу по подъему жидкости в зону нагрева).

Еще раз подчеркнем, что выполнение ИКР, то есть работы дополнительной для элемента, не должно мешать выполнению его полезных функций, и конечно же не должно мешать выполнению главной полезной функции всей системы. Выбор этого вспомогательного требования зависит от того, какую функцию выполняет выбранный элемент.

Кроме того, можно говорить о зоне внутри трубы, из которой выкачан воздух. Для нее мы тоже можем сформулировать ИКР, звучащий очень похоже на уже построенные. «Зона внутри трубы сама…» Есть и еще один объект - это тот самый насос, без которого мы хотим обойтись. Для того, чтобы обеспечить выполнение системой основной функции, может оказаться полезным предварительно ввести в систему новый элемент, просто для того, чтобы тут же постараться от него избавиться, оставив себе все его достоинства. В данном случае мы можем попробовать представить себе систему с насосом и согласно ИКР оставить в системе только рабочий орган насоса - например, его крыльчатку. И уже после этого потребовать от крыльчатки, чтобы она сама, без помощи двигателя и иных элементов поднимала жидкость - теплоноситель в зону нагрева.

Конечно, если мы выберем насос, работающий на ином принципе, например перистальтический, то требование будет предъявлено уже к иному рабочему органу. «Трубка сама пульсирует и поднимает жидкость наверх».

Вся совокупность построенных вариантов ИКР может и не определяться в рамках реального решения задачи. Но из сделанных построений виден общий принцип - ИКР обеспечивает концентрацию интеллектуальных усилий на выбранном элементе, заставляет человека, решающего задачу, искать в нем скрытые возможности.

Эффективным решением задачи о самостоятельном подъеме теплоносителя в зону нагрева при малых длинах трубки является использование капилляров. Кстати, капилляры также являются наиболее эффективным средством доставки теплоносителя в зону нагрева при использовании тепловой трубы в невесомости. Боковая поверхность трубки при этом выстилается слоем капиллярно-пористого вещества. Для труб с высокой рабочей температурой в качестве капилляров используется насечка на внутренней поверхности трубы.

Известно, что на поверхности тепловой трубы в рабочем режиме устанавливается (САМА!) постоянная температура. Это очень удобно для термостатирования, ведь в технике часто требуется обеспечить постоянство температурного поля, например, при сушке, при испытании серии приборов… С помощью тепловой трубы это реализуется довольно просто. Можно иметь на входе нагреватель с любой температурой, превышающей температуру испарения теплоносителя, и тепловая труба будет «срезать» все лишнее. Температура поверхности трубы будет зависеть только от соотношения интенсивностей подвода и отвода тепла и площадей теплообмена. Если процессы подвода и отвода тепла устоялись и равны площади поверхностей испарителя и конденсатора, то температура трубы равна половине суммы температур нагрева и конденсации.

Задача 4.2.: Рассмотрим работающую тепловую трубу. Она внешне не отличается от трубы неработающей. На испытательном стенде возникла задача: как определить, что тепловая труба вышла в рабочий режим. Поставим и эту задачу через формулирование ИКР, через определение требуемого результата. Конечно, для этого требуется понимать, что же происходит с трубой, когда она выходит на рабочий режим. Об этом могут сообщать ее элементы, находящиеся в измененном состоянии: в состоянии, связанном именно с тем, что тепловая труба устойчиво работает.

Что же происходит с элементами, когда тепловая труба работает? Вся поверхность корпуса имеет постоянную температуру. Капилляры заполнены жидкостью, поднимающейся вверх. Существует перепад давления между концами трубы. В зоне нагрева давление паров теплоносителя максимально, в зоне конденсации оно практически отсутствует. Нагретый теплоноситель, ставший паром, переносится от горячего конца в зону конденсации.

Все эти явления, которые мы можем назвать особенностями конкретной ситуации, могут сообщать нам о появлении нужного нам режима. На каждом из них можно сформулировать ИКР и построить на основе этих ИКР варианты возможных решений.

Один из вариантов, реализованный в лаборатории с целью проверки работоспособности тепловой трубы, состоял в том, что внутрь трубы был помещен обычный свисток (или упругая пластинка, которая колебалась в потоке пара и заставляла трубу звучать). Конечно, это решение в чем-то «идеально», а в чем-то и нет. Ведь в реальной установке этот способ, скорее всего, неприменим из-за дополнительного звукового фона. Но это «быстро внедряемое» решение обеспечило получение нужного знания с помощью подручных средств. Оно же дало еще одну задачу: как заставить свисток звучать только в требуемый момент. И здесь тоже ответ может подсказать оператор ИКР. Его можно сформулировать следующим образом.

«Свисток сам звучит только в момент, когда это необходимо оператору».

Построим еще более точную формулировку требования:

«Язычок свистка сам колеблется только в момент, когда это необходимо оператору».

Такое избирательное поведение может быть реализовано с помощью внешней силы, например, ввинчиваемого в боковую поверхность трубы стопора, заживающего язычок свистка.

Рассмотрим ситуации, в которых для поиска путей решения будет использоваться идеальность и основанный на ней оператор ИКР.

Задача 4.3.: Из металла изготавливаются небольшие металлические пустотелые шарики. Требуется, чтобы стенки шариков были равной толщины. Для обеспечения такого отбора можно создать сложное устройство бесконтактного контроля, а можно попробовать построить ИКР и искать решение на основе его формулировки.

Но сначала желательно определить, к какому из шариков предъявляется требование. Например, к шарику, в котором внутренняя полость расположена не центрально. Если так, то после этого уточнения требование определить значительно проще.

«Плохой» шарик сам отделяется от хороших шариков.

Более точно, то есть после рассмотрения природы явления на физическом уровне:

«Смещенный центр тяжести» шарика сам отделяет его от «хороших».

Возможный принцип решения: шарики поочередно должны скатываться по узкой линейке, установленной наклонно. Те из них, у которых центр масс расположен не в центре, будут отклоняться от прямолинейной траектории и падать с узкой дорожки. Разделение качественно изготовленных и бракованных шариков происходит при этом «само собой».

Задача 4.4.: Рассмотрим реальную ситуацию, описанную в книге М. Вертгеймера «Продуктивное мышление».

«Два мальчика играли в саду в бадминтон. Я мог видеть и слушать их из окна, хотя они меня не видели. Одному мальчику было 12 лет, другому - 10. Они сыграли несколько сетов. Младший был значительно слабее; он проиграл все партии.

Я частично слышал их разговор. Проигрывающий, назовем его „В“, становился все более и более грустным. У него не было никаких шансов. „А“ часто подавал так умело, что „В“ даже не мог отбить волан. Ситуация все более ухудшалась. Наконец „В“ бросил ракетку, сел на поваленное дерево и сказал: „Не буду больше играть“. „А“ пытался убедить его продолжать игру. „В“ не ответил. „А“ сел рядом с ним. Оба выглядели огорченными.

Здесь я прерываю рассказ, чтобы задать читателю вопрос: „Что бы вы предложили? Что бы вы сделали на месте старшего мальчика? Можете ли вы предложить что-нибудь разумное?“»

Попробуем решить эту нетехническую задачу (как сделать так, чтобы обоим игрокам хотелось играть и было интересно играть) с помощью оператора ИКР. Здесь также требуется четко поставить цель. Что бы мы хотели в конечном счете? Очевидно, что обоим игрокам должно быть интересно играть, даже несмотря на разницу в классе.

ИКР может звучать здесь следующим образом:

«Игрок „А“ сам помогает игроку „В“ отбивать мяч, не ухудшая своих показателей и не делая игру более скучной для себя».

Это может быть достигнуто, если оба игрока будут играть на один и тот же результат.

Целью игры также могло бы стать:

Стремление как можно дольше удержать волан в воздухе;

Необходимость для сильного игрока попасть в мишень воланом, который отобьет ему слабый игрок.

Или… сильный игрок мог бы играть левой рукой и т. д.

Уже сама формулировка цели в данном случае открывает возможности для ее достижения.

Задача 4.5.: Зимой водосточные трубы заполняются льдом. Весной лед начинает оттаивать, и возможны ситуации, когда ледяная пробка, подтаяв с внешней стороны и потеряв сцепление с трубой, летит вниз. Удар такой пробки о выступающие части трубы часто приводит к ее разрыву. Если же ледяная пробка падает на тротуар, то она может стать причиной травм находящихся вблизи людей. Выколачивание льда - дорогое и малоэффективное мероприятие. Как добиться того, чтобы пробки не падали вниз?

ИКР может быть обращен ко всем элементам, приведенным в данной задаче. Мы можем считать, что их всего два: лед и труба. Важным вопросом является формирование требования к этим элементам.

«Лед сам удерживается в трубе до момента полного таяния».

«Труба сама удерживает лед до момента его полного таяния».

Как можно видеть, в реальной ситуации труба и лед не держатся друг за друга до момента полного таяния (ведь нам приходится их об этом «просить»).

«Лед сам держится за трубу той своей частью, которая растает в последнюю очередь».

Возможный итог решения описан в одном из российских изобретений:

«Водосточная труба, включающая водосборную воронку, прикрепленную около ската крыши, колена обхода карниза и слива, отличающаяся тем, что, с целью создания защиты от повреждения падающим внутри трубы льдом, труба снабжена отрезком произвольно изогнутой проволоки, расположенной со стороны воронки внутри трубы и прикрепленной верхним концом к скату крыши» (рис. 4.3).

Рис. 4.3

В этом решении видно, что выполненное изменение - пропущенная внутри трубы проволока позволяет приблизиться к реализации ИКР, определенного для льда: лед сам удерживается внутри трубы до момента полного таяния.

Объекты техники имеют огромное количество свойств и характеристик, из которых в конкретных обстоятельствах человек почти всегда использует крайне незначительную часть. Этот запас свойств позволяет нам требовать от элементов системы чего-то нового и находить новые возможности их использования.

Можно констатировать, что идеальность - универсальный инструмент мыслительной деятельности.

Отличие идеальной технической системы от используемых в науке идеализаций состоит в том, что в науке модель приближают к реальному миру, а в технике реальный мир создают на основе модели. И если в науке к абсолютной истине можно только стремиться, никогда ее не достигая, то в технике можно сразу понять эту абсолютную для себя истину, то есть конечный предел, итоговое состояние объекта, но тоже стремиться к этому состоянию, к этой истине бесконечно. Выражаясь фигурально, техника дает нам возможность жить в мире мечтаний, делая их реальностью. И механизм работы с идеальными моделями, с ИКР является практическим инструментом реализации этих возможностей.

Из книги Битва за звезды-2. Космическое противостояние (часть II) автора Первушин Антон Иванович

Приложение I ПОНЯТИЯ Апогей - максимальная высота эллиптической орбиты космического аппаратаАэродинамическое качество- безразмерная величина, являющаяся отношением подъемной силы самолета к лобовому сопротивлению или отношением коэффициентов этих сил при угле

Из книги Творчество как точная наука [Теория решения изобретательских задач] автора Альтшуллер Генрих Саулович

4. Закон увеличения степени идеальности системы Развитие всех систем идет в направлении увеличения степени идеальности. Идеальная техническая система - это система, вес, объем и площадь которой стремятся к нулю, хотя ее способность выполнять работу при этом не

Из книги Информационная технология ПРОЦЕСС СОЗДАНИЯ ДОКУМЕНТАЦИИ ПОЛЬЗОВАТЕЛЯ ПРОГРАММНОГО СРЕДСТВА автора Автор неизвестен

В.З Практическое применение настоящего стандарта Необходима адаптация настоящего стандарта в интересах потребителей и пользователей в целях его практического применения.Практическое применение настоящего стандарта обычно заключается в исключении и добавлении ряда

Из книги Обеспечение безопасности образовательного учреждения автора Петров Сергей Викторович

1.2. Основные понятия Опасность– воздействие или угроза поражающего (деструктивного) воздействия неблагоприятных процессов, явлений, событий, иных внешних и внутренних факторов на учащихся и персонал ОУ, их жизнь, здоровье, права и свободы, имущество и окружающую

Из книги Информационная безопасность человека и общества: учебное пособие автора Петров Сергей Викторович

6.2. Основные понятия Терроризм – насилие или угроза его применения в отношении физических лиц или организаций, а также уничтожение (повреждение) или угроза уничтожения (повреждения) имущества и других материальных объектов, создающие опасность гибели людей, причинение

Из книги Приборостроение автора Бабаев М А

1.1. Основные понятия Информация-это сведения обокружающеммиреи протекающих в нем процессах, воспринимаемые человеком или специальным устройством для нужд человека. Информация необходима каждому как условие и как средство существования человека в обществе. И поэтому

Из книги Феномен науки [Кибернетический подход к эволюции] автора Турчин Валентин Фёдорович

1. Основные понятия и определения Невозможно представить себе современную жизнь, идет ли речь о промышленности, других секторах экономики или просто о быте населения, без применения или использования технических приборов.За каждым техническим изделием стоит

Из книги Учебник по ТРИЗ автора Гасанов А И

2.1. Понятие понятия Рассмотрим такую нервную сеть, которая на входе имеет много рецепторов, а на выходе - всего один эффектор, так что нервная сеть делит множество всех ситуаций на два подмножества: ситуации, вызывающие возбуждение эффектора, и ситуации, оставляющие его в

Из книги Электронные самоделки автора Кашкаров А. П.

7.15. Понятия-конструкты Понятия, подобные понятию «пространственное отношение», опираются на действительность не непосредственно, а через посредство промежуточных языковых построений, они становятся возможными в результате определенной языковой конструкции. Поэтому

Из книги Электронные фокусы для любознательных детей автора Кашкаров Андрей Петрович

3. Понятие идеальности

Из книги Затворные системы «переломок» автора Маслов Юрий Анатольевич

1.9.1. Практическое применение устройства На практике такое устройство с запоминанием состояния используют для контроля посещений охраняемых и складских помещений, однако его с успехом можно применять и в быту, т. е. дома, подключив схему (рис. 1.12) совместно с

Из книги История электротехники автора Коллектив авторов

2.5.3. Практическое применение устройства Адаптер можно с успехом применять и в ряде других случаев. Так, с его помощью можно записать разговор на диктофон или магнитофон, а также на компакт-диск с помощью персонального компьютера. Для этого выход адаптера экранированным

Из книги автора

2.6.1. Практическое применение устройства Очень просто с помощью небольшой доработки, позволяющей включать и выключать его автоматически.Далеко не все люди обладают хорошим здоровьем и слухом, поэтому для тех, кому трудно передвигаться и даже держать в руках телефонную

Из книги автора

2.4.2. Практическое применение Практическое применение ДП (кроме рассмотренного выше варианта) может быть разнообразным.Например, датчик положения головы – при установке ДП в шлемофоны мотоциклов или в шлемофоны – аксессуары для компьютерных игр, или датчик наклона

Из книги автора

Из книги автора

2.4. ОТКРЫТИЕ ЭЛЕКТРИЧЕСКОЙ ДУГИ И ЕЕ ПРАКТИЧЕСКОЕ ИСПОЛЬЗОВАНИЕ Наибольший интерес из всех работ В.В. Петрова представляет открытие им в 1802 г. явления электрической дуги между двумя угольными электродами, соединенными с полюсами созданного им источника высокого