ГАЗ-53 ГАЗ-3307 ГАЗ-66

Светодиодный индикатор заряда аккумулятора. Индикатор заряда аккумулятора своими руками Собрать индикатор заряда на аккумуляторе

Все мы оказывались в ситуации, когда очень важно знать, насколько сильно разряжен аккумулятор и сколько времени остается до отключения устройства. Максимально точно определить заряд и время поможет малопотребляющая микросхема MAX17055 на базе алгоритма ModelGauge m 5 EZ от Maxim Integrated .

Носимые устройства являются привлекательным и растущим сегментом рынка, в котором интеллектуальные часы продолжают удерживать доминирующее положение. Каждый производитель стремится занять лидирующую позицию в этой переполненной и конкурентной среде, в то время как потребители требуют точного определения заряда аккумуляторной батареи и максимально долгой работы устройств (рисунок 1). Рассмотрим требования, связанные с важной функцией контроля за емкостью аккумулятора, а также познакомимся с прорывной технологией, которая решает эти задачи.

Проблемы затягивания сроков вывода устройств на рынок

Эффективность использования аккумулятора зависит от качества применяемой математической модели, которая лежит в основе алгоритма измерения уровня заряда. Если потратить время на исследование индивидуальных характеристик аккумулятора, то вы получите более точное математическое описание, сможете снизить возможность возникновения ошибки текущего состояния заряда (SOC) и правильно спрогнозировать, когда аккумулятор приближается к полному разряду.

Энергия, запасенная в батарее (емкость в мА·ч), зависит от таких параметров как нагрузка и температура. В результате разработчики должны снимать характеристики заряда/разряда аккумулятора для работы в самых разнообразных условиях. Как только модель заряда-разряда, описывающая поведение аккумулятора, определена – она загружается в специализированную микросхему, которая следит за состоянием SoC в процессе работы аккумулятора (эти микросхемы часто называют «топливомером» или Fuel Gauge . Прим. ред.) . Тщательный контроль за состоянием аккумулятора позволяет обеспечить более высокий уровень безопасности при заряде и разряде, продлить срок службы аккумулятора.

Получение модели аккумулятора является проблемой, увеличивающей срок вывода продукта на рынок. Трудности в обслуживании потребителей любого уровня, в том числе — и наиболее крупносерийных, также составляет сложность для производителей. Поставщики интегральных схем (ИС) традиционно ориентированы на производителей крупных серий устройств, поскольку для получения модели часто требуется обширная исследовательская работа, и только некоторые производители ИС имеют необходимые для этого ресурсы.

Проблемы оценки времени работы аккумулятора

Одним из важных последствий использования неточной модели аккумулятора является высокая погрешность при оценке времени его работы. Типовой суточный сценарий работы интеллектуальных часов включает в себя 5 часов в активном состоянии, в том числе таких действий как проверка времени и уведомлений, использование приложений, воспроизведение музыки, разговоры и тренировки, и 19 часов в пассивном состоянии (только проверка времени). Если устройство потребляет 40 мА в активном режиме и 4 мА в пассивном, то в общей сложности потребление составит 276 мА·ч в день, что примерно соответствует емкости типичной аккумуляторной батареи. Точное предсказание времени работы батареи необходимо для предотвращения неожиданных или преждевременных перерывов в работе устройства.

Продолжительность времени работы также важна. В пассивном режиме типовая аккумуляторная батарея может выдерживать до 69 часов работы (276/4 мА). Типовая микросхема Fuel Gauge , потребляющая 50 мкА, сократит время работы батареи в пассивном режиме примерно на 52 минуты, а такой величиной уже нельзя пренебрегать.

Использование технологии EZ для решения проблем

Компания Maxim Integrated создала алгоритм для точной оценки состояния заряда и безопасного управления для большинства аккумуляторных батарей. Алгоритм был разработан после изучения характеристик обычных литиевых аккумуляторов.

В алгоритме ModelGauge™ m5 EZ (EZ) используется модель аккумулятора, встраиваемая в ИС Fuel Gauge, которая настроена на конкретное приложение. Проектировщики могут создавать модели аккумуляторов, используя простую утилиту настройки, которая входит в состав программного обеспечения оценочного набора. Разработчику системы необходимо предоставить значения только трех параметров:

  • емкость (зачастую указывается на этикетке или в документации на аккумулятор);
  • напряжение аккумулятора, которое будет считаться напряжением полного разряда аккумулятора (зависит от приложения);
  • напряжение полного заряда аккумулятора (если оно выше 4,275 В).

С технологией EZ разработчикам больше не нужно самостоятельно строить модель аккумулятора, поскольку это уже было сделано производителем микросхемы контроля состояния заряда(Fuel Gauge).

Несколько адаптивных механизмов, реализованных в алгоритме EZ, еще больше повышают точность измерения уровня заряда за счет дополнительного изучения характеристик аккумуляторной батареи в процессе работы. Один из таких механизмов гарантирует, что по мере разряда аккумулятора показания датчика будут стремиться к 0%. Поэтому датчик сообщает об уровне заряда (SOC), равном 0%, как только напряжения ячейки снизится до уровня полного разряда.

Если мы зададимся величиной бюджета ошибки на уровне 3%, то при измерении полного разряда аккумулятора 95,5% всех моделей EZ пройдут тестирование. Это очень близко к показателям, демонстрируемым лабораторными моделями, которые успешно проходят испытания в 97,7% тестовых случаев. Как показано на рисунке 2, механизм EZ работает примерно на том же уровне точности, когда батарея только приближается к полному разряду, и это наиболее важно.

Для многих пользователей недостаточно знать уровень заряда или оставшуюся емкость аккумулятора. На самом деле они хотят знать, сколько времени осталось до полного разряда. Упрощенные методы, такие как деление оставшейся емкости на настоящую или будущую нагрузку, могут привести к чрезмерно оптимистичным оценкам. Алгоритм EZ способен дать гораздо более точную оценку времени до полного разряда, основываясь на известных параметрах батареи, температуре, уровне нагрузки и значении напряжения полного разряда для конкретного приложения.

Благодаря алгоритму EZ крупносерийные производители могут использовать его в качестве отправной точки для быстрой разработки. И только после того, как они получат рабочий прототип, можно перейти на специализированную выверенную модель заряда-разряда. Менее крупные производители могут применять алгоритм EZ для наиболее доступных аккумуляторов, с тем лишь условием, что разброс параметров аккумуляторов не будет слишком большим.

MAX17055: Fuel Gauge c ModelGauge m5 EZ

Микросхема MAX17055 на базе алгоритма ModelGauge m5 EZ предназначена для работы с аккумулятором, состоящим из одной ячейки. В режиме ”Shutdown Mode” она потребляет 0,7 мкА, а в спящем режиме – всего 7 мкА и всего 18 мкА в активном состоянии, что идеально подходит для носимых устройств с батарейным питанием. Интерфейс I²C обеспечивает доступ к регистрам данных и управления и обеспечивает полный контроль над микросхемой.

Сравнительный анализ погрешностей измерения

На рисунке 3 представлен сравнительный анализ погрешностей MAX17055. Эта диаграмма показывает, что при почти полном разряде аккумулятора микросхема MAX17055 в большинстве тестовых случаев (15 из 26) обеспечивает погрешность не более 1%, в то время как конкурирующий аналог демонстрирует гораздо более высокую погрешность для одного и того же количества испытаний.

Преимущества при оценке времени работы

Малая погрешность около значений состояния полного разряда аккумулятора обеспечивает оптимальное использование заряда батареи, увеличение времени работы и минимизацию возможности неожиданного или преждевременного прерывания работы устройства, то есть позволяет лучше прогнозировать время работы до полного разряда.

Увеличение срока службы по сравнению с конкурентами

Использование ИС Fuel Gauge с малым значением тока собственного потребления увеличивает время работы аккумулятора. Для MAX17055 ток в активном состоянии составляет 18 мкА, что на 64% ниже, чем у ближайшего конкурента. Кроме того, в спящем режиме ток падает до 7 мкА. Применяя эти характеристики к рассмотренному в начале статьи суточному сценарию для умных часов, можно посчитать, что время работы аккумулятора сокращается уже не на 52 минуты, а всего лишь на 7 минут. Это – существенное увеличение времени работы.

Заключение

Очень важно использовать качественные математические модели заряда-разряда аккумуляторов для построения эффективной системы измерения заряда, которая определяет время работы аккумулятора с максимальной точностью. Сложности, возникающие при построении точных моделей аккумуляторов, увеличивают время выхода устройств на рынок и препятствуют выпуску небольших серий устройств с батарейным питанием. Прорывной подход, основанный на алгоритме E7 ModelMauge m5 EZ, встроенном в MAX17055, делает процесс разработки быстрее, проще, дешевле и обеспечивает более эффективное использование аккумуляторов в широком спектре приложений.

Как такового датчик заряда аккумулятора не существует. Контроль за зарядом осуществляется по приборам, которые включаются непосредственно в схему электропроводки и контролируют её состояние.

Амперметр в качестве датчика заряда.

На старых автомобилях для этих целей часто применялись амперметры, двойного действия, которые показывали направление и силу проходящего по цепи тока. Прибор устанавливался в разрыв цепи между аккумуляторной батареей и потребителями с генератором. При включении потребителей, когда питание потребителей осуществляется от аккумулятора, стрелка амперметра откланяется от нуля в сторону минуса показывая разряд батареи. При работе двигателя, когда генератор начинает работать и выдаёт напряжение выше напряжения аккумуляторной батареи (13,5 – 14,5В), стрелка прибора откланяется к плюсу на величину проходящего через амперметр тока, показывая заряд батареи. Когда аккумулятор заряжен, то есть напряжение генератора равно или разница минимальна, стрелка находится у нулевой отметки.

Вольтметр как датчик заряда аккумулятора.

Последнее время в качестве прибора оценивающего работу генератора и аккумулятора, большое распространение получил вольтметр. Вольтметр подключается непосредственно к проводу, подающему питание к приборной доске. Подключение вольтметра намного проще, чем у амперметра, что намного упрощает схему и уменьшает цепи незащищённые предохранителями. Но с другой стороны на показания вольтметра влияет большое количество контактных соединений, что приводит к погрешности показаний. Этот фактор необходимо учитывать при диагностике работы генератора и аккумулятора. Так же вольтметр не показывает путь тока, то есть при неисправности аккумулятора он не будет заряжаться, то по вольтметру это ни как не заметить, в отличае от амперметром.

Датчик заряда аккумулятора, контрольная лампа.

Совместно с амперметром и вольтметром в качестве контроля заряда аккумулятора применяется сигнальная лампа, в качестве “датчика заряда аккумулятора ” используется генератор. Так же лампа зарядки может использоваться и без дополнительных приборов.

Существует несколько контрольной лампы. В зависимости от схемы подключения контрольная лампа показывает состояние элементов генератора и наличие напряжения заряда. Если при включении зажигания загорается лампа контроля заряда, значит и элементы генератора исправны, в противном случае необходимо искать неисправность. В некоторых схемах через цепь контрольной лампы осуществляется первоначальное возбуждение.

В отличие от амперметра и вольтметра контрольная лампа показывает только исправность цепи первоначального возбуждения генератора. По ней можно определить исправность регулятора напряжения и обмотки возбуждения, но о полном исправности генератора судить нельзя. Тем более трудно судить о заряде аккумуляторной батареи.

admin 31/05/2011

«Если Вы заметили ошибку в тексте, пожалуйста выделите это место мышкой и нажмите CTRL+ENTER» "Если статья была Вам полезна, поделитесь ссылкой на неё в соцсетях"

Удивительно, что абсолютное большинство автомобилей не имеет датчика зарядки аккумулятора. Как определить зимой, что АКБ стоит подзарядить за ночь, чтобы утром не идти на работу пешком? Или если машину завести не получается – как не загонять безсмысленно батарею до полного истощения?

Используя эту схему вы сможете легко собрать своими руками датчик зарядки аккумулятора. Притом себестоимость, как видите, будет ниже чем у любого китайского аналога, а качество намного лучше! Запитывать модель имеет смысл от замка зажигания, дабы диод светился только, когда ключ вставлен.

Цвет светодиода будет обозначать степень зарядки. Красный – от 6 Вольт до 11, синий от 11 до 13, зелёный боле 13

В комплект входят следующие детали:

Транзисторы
BC547 – 1шт
BC557 – 1шт
Резисторы
1 кОм – 2шт
220 Ом – 3 шт
2,2 кОм – 1 шт
Диоды (стабилитроны)
10 v – 1шт
9,1 v – 1шт
Светодиоды
RGB светодиод – 2шт

Светодиод проверяем тестером, заодно проверяем какой вывод соответствует каждому цвету:

После примеряем детали к печатной плате и вырезаем нужный нам кусок:

Затем приклеиваем светодиод к плате и начинаем монтаж элементов. Важный момент! Так как этот модуль вы будете использовать в автомобиле, то целесообразно не припаивать светодиод к плате, а вывести его на проводах. Так, чтобы вы могли установить его отдельно на приборной панели. Мы же установим его на плату – для простоты и наглядности.

Схема транзисторов(на всякий случай):

Вот что получилось:

Схема отлично работает, тестировалась полчаса, прогоном напряжения от минимального до максимального. В качестве источника питания использовался блок питания от ноутбука с выходным напряжением 19V. Регулятор напряжения – LM 317 и подстроечный резистор 10 кОм. На видео есть небольшой сбой срабатывания на переходе красный – синий и синий – зеленый, это связано со слишком быстрым падением/приростом напряжения (тестер не успевал фиксировать изменения вольтажа), на аккумуляторе все это будет срабатывать плавнее и точнее.

Индикатор заряда аккумулятора своими руками на двух светодиодах — правильно обслуживаемые аккумуляторы будут работать у вас хорошо и долю. Обслуживание подразумевает, в частности, регулярный контроль напряжения аккумулятора. Изображенная на Рисунке 1 схема подходит для большинства типов аккумуляторов. Она содержит опорный светодиод LED REF , работающий при постоянном токе 1 мА и обеспечивающий эталонный световой поток постоянной интенсивности, не зависящей от напряжения аккумулятора.

Это постоянство обеспечивается резистором R1 включенным последовательно со светодиодом. Поэтому, даже если напряжение полностью заряженного аккумулятора упадет до полного разряда, ток через него изменится всего на 10%. Таким образом, можно считать, что интенсивность излучения остается постоянной в диапазоне напряжений аккумулятора, соответствующем переходу от состояния полного заряда до полного разряда.

Световой поток измерительного светодиода LED VAR меняется в соответствии с изменениями напряжения аккумулятора. Расположив светодиоды поблизости друг от друга, вы получите возможность легко сравнивать яркость их свечения, и, таким образом, определять статус аккумулятора. Используйте светодиоды с диффузно-рассеивающей линзой, поскольку приборы с прозрачной линзой раздражают ваши глаза. Обеспечьте достаточную оптическую изоляцию светодиодов, чтобы свет одного светодиода не попадал на линзу другого.

Работа измерительного светодиода

Измерительный светодиод работает при токе, меняющемся от 10 мА при полностью заряженном аккумуляторе до значений менее 1 мА при полном разряде. Стабилитрон D z с последовательным резистором R 2 необходимы для того, чтобы ток имел резкую зависимость от напряжения батареи. Сумма напряжения стабилитрона и падения напряжения на светодиоде должна быть чуть меньше, чем самое низкое напряжение аккумулятора. Это напряжение падает на резисторе R 2 . Изменения напряжения батареи вызывают большие изменения тока резистора R 2 . Если напряжение равно примерно 1 В, через светодиод LED VAR течет ток 10 мА, и он светится намного ярче, чем LED REF . Если напряжение ниже 0.1 В, интенсивность свечения LED VAR var будет меньше, чем у LED REF . показывая, что аккумулятор разряжен.

Индикатор заряда аккумулятора своими руками — непосредственно после окончания зарядки аккумулятора напряжение на нем превышает 13 В. Для схемы это безопасно, поскольку ток ограничен значением 10 мА. Если светодиоды горят ярко, быстро отпустите кнопку S 1 1(чтобы не допустить их повреждения (Рисунок 2). Хотя в примере на Рисунке 2 индикатор заряда подключен к 12-вольтовой свинцово-кислотной аккумуляторной батарее, вы без труда можете адаптировать эту схему к другим типам аккумуляторов. Кроме того, вы можете использовать ее для контроля напряжения.

Два зеленых светодиода индуцируют состояние, когда заряд батареи превышает 60%. Набор красных светодиодов показывает, что заряд аккумулятора упал ниже 20%. Светодиоды LED REFG и LED REFR подключены через резисторы R 1 и R 2 сопротивлением 10 кОм. Последовательное измерительными светодиодами, яркость свечения которых изменяется, включены стабилитроны и резисторы R 3 и R 4 сопротивлением 100 Ом. Диоды D 1 , D 2 и D 3 задают требуемое напряжение ограничения. Зависимость яркости свечения светодиодов от состояния аккумулятора показана в Табпице1.

Для расчета интенсивности свечения зеленого измерительного светодиода можно использовать следующее выражение:

V BATT = 10 G x 100 +V D1 +V D2 +V LEDG +V DZ1

V BATT =10 3 x 100+0.6+0.6+1.85+9.1=1225B.

Падение напряжения на используемых светодиодах при прямом токе 1 мА равно 1.85 В. Если характеристики светодиодов отличаются, сопротивления резисторов необходимо пересчитать. При этом напряжении светодиоды светятся одинаково, что соответствует заряду аккумулятора на 60%. Описание свинцово-кислотных аккумуляторов можно найти в. Для расчета интенсивности свечения красного измерительного светодиода можно использовать следующее выражение:

V BATT = I R x IOO+V D3 +V LEDR +V ZD2

При токе зеленого светодиода 1 мА

V BATT =10 -3 x 100 +0.6 + 1.85 + 9.1 =11.65 В.

Поскольку при таком напряжении оба красных светодиода светятся одинаково, это означает, что аккумулятор заряжен на 20%. Светодиод LED VARG varg не горит. Рисунок 3 показывает, что оба измерительных светодиода светятся ярче опорных, сообщая о том, что аккумулятор заряжен на 100%

Успешный пуск автомобильного двигателя во многом зависит от состояния заряда аккумулятора. Регулярно проверять напряжение на клеммах с помощью мультиметра – неудобно. Гораздо практичнее воспользоваться цифровым или аналоговым индикатором, расположенным рядом с приборной панелью. Простейший индикатор заряда аккумулятора можно сделать своими руками, в котором пять светодиодов помогают отслеживать постепенный разряд либо заряд батареи.

Принципиальная схема

Рассматриваемая принципиальная схема индикатора уровня заряда представляет собой простейшее устройство, отображающее уровень заряда аккумулятора (АКБ) на 12 вольт. Её ключевым элементом является микросхема LM339, в корпусе которой собрано 4 однотипных операционных усилителя (компаратора). Общий вид LM339 и назначение выводов показан на рисунке. Прямые и инверсные входы компараторов подключены через резистивные делители. В качестве нагрузки используются индикаторные светодиоды 5 мм.

Диод VD1 служит защитой микросхемы от случайной смены полярности. Стабилитрон VD2 задаёт опорное напряжение, которое является эталоном для будущих измерений. Резисторы R1-R4 ограничивают ток через светодиоды.

Принцип работы

Работает схема индикатора заряда аккумулятора на светодиодах следующим образом. Застабилизированное с помощью резистора R7 и стабилитрона VD2 напряжение 6,2 вольт поступает на резистивный делитель, собранный из R8-R12. Как видно из схемы между каждой парой этих резисторов формируются опорные напряжения разного уровня, которые поступают на прямые входы компараторов. В свою очередь, инверсные входы объединены между собой и через резисторы R5 и R6 подключены к клеммам аккумуляторной батарее (АКБ).

В процессе заряда (разряда) аккумулятора постепенно изменяется напряжение на инверсных входах, что приводит к поочередному переключению компараторов. Рассмотрим работу операционного усилителя OP1, который отвечает за индикацию максимального уровня заряда АКБ. Зададим условие, если заряженный аккумулятор имеет напряжение 13,5 В, то последний светодиод начинает гореть. Пороговое напряжение на его прямом входе, при котором засветится этот светодиод, рассчитаем по формуле:
U OP1+ = U СТ VD2 – U R8 ,
U СТ VD2 =U R8 + U R9 + U R10 + U R11 + U R12 = I*(R8+R9+R10+R11+R12)
I= U СТ VD2 /(R8+R9+R10+R11+R12) = 6,2/(5100+1000+1000+1000+10000) = 0,34 мА,
U R8 = I*R8=0,34 мА*5,1 кОм=1,7 В
U OP1+ = 6,2-1,7 = 4,5 В

Это означает, что при достижении на инверсном входе потенциала величиной более 4,5 вольт компаратор OP1 переключится и на его выходе появится низкий уровень напряжения, а светодиод засветится. По указанным формулам можно рассчитать потенциал на прямых входах каждого операционного усилителя. Потенциал на инверсных входах находят из равенства: U OP1- = I*R5 = U БАТ – I*R6.

Печатная плата и детали сборки

Печатная плата изготавливается из одностороннего фольгированного текстолита размером 40 на 37 мм, которую можно скачать . Она предназначена для монтажа DIP элементов следующего типа:

  • резисторы МЛТ-0,125 Вт с точностью не менее 5% (ряд Е24)
    R1, R2, R3, R4, R7, R9, R10, R11– 1 кОм,
    R5, R8 – 5,1 кОм,
    R6, R12 – 10 кОм;
  • диод VD1 любой маломощный с обратным напряжением не ниже 30 В, например, 1N4148;
  • стабилитрон VD2 маломощный с напряжением стабилизации 6,2 В. Например, КС162А, BZX55C6V2;
  • светодиоды LED1-LED5 – индикаторные типа